Abdulla Aljunibi

ARITHMETIC

INTEGERS: Integers are all positive and negative whole numbers including 0.

WHOLE NUMBERS Whole numbers are the numbers: 0, 1, 2, 3, 4, 5, 6, 9, 8, 9, 10, 11, 12, 13... and so on.

ADDITION OF WHOLE NUMBERS

SUBTRACTION OF WHOLE NUMBERS

MULTIPLICATION OF WHOLE NUMBERS

DIVISION OF WHOLE NUMBERS

$$\frac{1}{3}\frac{1}{4}$$
 $\frac{1}{4}$ $\frac{1}{4}$

LOWEST COMMON MULTIPLE (LCM) AND HIGHEST COMMON FACTOR (HCF)

16 and 12 HCFz 4 12= 1x1, 2x1, 3, 9, 6, 12 24 and 30 HCF= 6 24:112/3/4/0/8 30:1/2/3/5/6

40 and 60 and 75 HCF=5 40=1,2,3,4,3,8,10,20 60=1,2,3,4,3,6,10,12 75=1,3,5,15

DDECEDENCE

FILCEDEIN	CL	~ ~
	Priority Order of Calculation	
First	Brackets	1
Second	Powers and Roots	
Third	Multiplication and Division	1
Fourth	Addition and Subtraction	V - 1
		- /

Figure 1-3. Order in which calculations are carried out table.

34 - 2 × (3 × (6 - 2) + 3)

USE OF VARIABLES

1 (6-2) 24

Calculate the value of 2
$$(x + 3y) - 4xy$$
 When $x = 5$ and $y = 2$

$$2(5+3(2)=22$$

Calculate the value of
$$u + at$$
 When $u = 2$, $a = 4$ and $t = 9$

$$\frac{x=5}{Y=2}$$

POSITIVE AND NEGATIVE NUMBERS (SIGNED NUMBERS)

ADDITION OF POSITIVE AND NEGATIVE **NUMBERS**

The weight of an aircraft is 2 000 pounds. A radio rack weighing 3 pounds and a transceiver weighing 10 pounds are removed from the aircraft. What is the new weight? For weight and balance purposes, all weight removed from an aircraft is given a minus sign, and all weight added is given a plus sign.

$$= 2000 + -3 + -10 = 2000 + -13 = 1987$$

$$2000 - 3 - 10 = 20 + 20 = 0$$

$$2000 - 13 = 20 - (-20) = 40$$

SUBTRACTION OF POSITIVE AND NEGATIVE NUMBERS

Example: The daytime temperature in the city of Denver was 6° below zero (-6°). An airplane is cruising at 15 000 feet above Denver. The temperature at 15 000 feet is 20° colder than in the city of Denver. What is the temperature at 15 000 feet?

MULTIPLICATION OF POSITIVE AND NEGATIVE NUMBERS

$$6 \div 3 = 2$$
,
 $-6 \div 3 = -2$,

$$-6 \div 3 = -2$$
,

$$-6 \div -3 = 2$$
,
 $6 \div -3 = -2$

MULTIPLICATION OF FRACTIONS

$$\frac{2}{3} \times \frac{3}{7} = \frac{2 \times 3}{3 \times 7} = \frac{6}{21} = \frac{5 \times 7}{6 \times 10} = \frac{35}{60}$$

DIVISION OF FRACTIONS

$$\frac{7}{9}$$
; $\frac{4}{\sqrt{3}}$; $\frac{7}{8}$; $\frac{3}{4}$; $\frac{7}{8}$; $\frac{21}{8}$; $\frac{21}{32}$

THE DECIMAL NUMBER SYSTEM

ADDITION OF DECIMAL NUMBERS

2.34 + 37.5 + 0.4

2.34

+37.5

-09

34.93

SUBTRACTION OF DECIMAL NUMBERS

37.272 - 14.88

-611

37.2172

-14.88

2.392

MULTIPLICATION OF DECIMAL NUMBERS

9.45 × 120

9.45 × 120

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

DIVISION OF DECIMAL NUMBERS = 19.2 86.4-0.12=720

6= 15.85

AREA AND VOLUME

RECTANGLE

1=6M

L	
	w
Figure 1-16. A rectangle.	

 $Area = Length \times Width \ or \ A = L \times W$

The formula for the area of a rectangle is:

v:5m	

Area = 6 X 5 = 30

SQUARE

$$Area = Side \times Side \quad or \quad A = S^2$$

W=7

L=3 Area=7x3=21

TRIANGLE

The formula for the area of a triangle is:

$$Area = \frac{1}{2} \times (Base \times Height) \ or \ A = \frac{1}{2} BH$$

½x (5 x 12) = 30

PARALLELOGRAM

$$Area = Length \times Height$$
 $A = LH$

TRAPEZOID

$$Area = \frac{1}{2} (Base_1 + Base_2) \times Height$$

$$A = \frac{1}{2} (35 + 25) \times 15$$

$$= \frac{1}{2} \times 60 \times 15 \qquad 60$$

$$A = 450 \text{ cm} \qquad 300$$

$$600$$

CIRCLE

Written as a formula:

$$Circumference = \pi \times d \quad or \quad C = 2 \ \pi \times r$$

The formula for finding the area of a circle is:

$$Area = \pi \times radius_2$$
 or $A = \pi r_2$

WING AREA

The formula for calculating wing area is:

Area of a Wing = Wing Span × Mean Chord or AW = SC

tanguiar sonu is:

 $Volume = Length \times Width \times Height or, V = LWH$

CUBE

 $Volume = Side \times Side \times Side \quad or \quad V = S^3$

The formula for the volume of a cylinder is:

Volume =
$$\pi \times radius_2 \times height of the cylinder$$

or, $V = \pi r_2H$

SPHERE

Volume =
$$\frac{4}{3} \times \pi \times radius^3$$
 or $V = \frac{4}{3} \times \pi r^3$

Figure 1-31. A sphere.

The formula for the volume of a cone is:

$$V = \frac{1}{3} \pi r^2 H$$

IMPERIAL SYSTEM		SI (METRIC)	SI (METRIC)		IMPERIAL SYSTEM
Distance			Distance		
1 Inch	is equal to	2.54 Centimeters	1 Centimeter	is equal to	0.394 Inches
1 Foot	is equal to	0.304 8 Meters	1 Meter	is equal to	3.28 Feet
1 (Statute) Mile	is equal to	1.609 3 Kilometers	1 Kilometer	is equal to	0.621 Miles
Weight			Weight		
1 Pound	is equal to	0.453 59 Kilograms	1 Kilogram	is equal to	2.204 Pounds
Volume			Volume		
1 Quart	is equal to	0.946 35 Liters	1 Liter	is equal to	1.057 Quarts
1 Gallon	is equal to	3.785 4 Liters	1 Lites	is equal to	0.264 Gallons
Temperature			Temperature		
0 Fahrenheit	is equal to	(-)17.778 Celsius	0 Celsius	is equal to	33.8 Fahrenheit
0 Fahrenheit	is equal to	255.37 Kelvin	0 Kelvin	is equal to	(-)437.87 Fahrenheit
Area			Area		
1 Square Inch	is equal to	6.451 6 Square Centimeters	1 Square Centimeter	is equal to	0.155 Square Inches
1 Square Foot	is equal to	0.092 903 Square Meters	1 Square Meter	is equal to	10.763 91 Square Feet
1 Square Mile	is equal to	2.59 Square Kilometers	1 Square Kilometer	is equal to	0.386 Square Miles
Speed			Speed		
1 Foot Per Second	is equal to	0.304 8 Meters Per Second	1 Meters Per Second	is equal to	3.281 Feet Per Second
1 Mile Per Hour	is equal to	1.609 3 Kilometers Per Hour	1 Kilometer Per Hour	is equal to	0.621 Miles Per Hour
1 Knot	is equal to	1.852 Kilometers Per Hour	1 Kilometer Per Hour	is equal to	0.540 Knots

Figure 1-33. Common conversions chart.